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Abstract

An artificial neural network has been used to model the irradiation hardening of low-activation ferritic/martensitic
steels. The data used to create the model span a range of displacement damage of 0–90 dpa, within a temperature range
of 273–973 K and contain 1800 points. The trained model has been able to capture the non-linear dependence of yield
strength on the chemical composition and irradiation parameters. The ability of the model to generalise on unseen data
has been tested and regions within the input domain that are sparsely populated have been identified. These are the regions
where future experiments could be focused. It is shown that this method of analysis, because of its ability to capture com-
plex relationships between the many variables, could help in the design of maximally informative experiments on materials
in future irradiation test facilities. This will accelerate the acquisition of the key missing knowledge to assist the materials
choices in a future fusion power plant.
� 2005 Elsevier B.V. All rights reserved.

PACS: 61.82 Bg
1. Introduction

Future magnetic confinement fusion power
plants will need to be fabricated from components
having service lifetimes, in the high neutron-flux
region of the first wall, of typically five years. Struc-
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tural first-wall materials such as steels will have to
be developed that can retain good mechanical prop-
erties in the presence of neutron irradiation damage
of up to 200 atomic lattice displacements per atom
(dpa) with transmutation helium gas at levels up
to 2000 atomic parts per million (appm) over the
design life [1]. The materials also need to minimise
activation through the formation of long-lived
radionuclides from alloying and impurity elements.

A reliable fusion power-plant design should
ideally be based on a comprehensive, multi-variable
.
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materials database well-populated with the mea-
sured mechanical properties of candidate fusion
materials, covering the ranges of physical conditions
expected. However, at present, few data exist on
candidate alloys at high dpa and there are no
high-dose data at fusion-relevant He/dpa ratios.
Proposed materials testing facilities, such as IFMIF
[2], are designed to provide relevant data but owing
to limitations on the number of samples that can be
irradiated in such a facility, it will be vital to prior-
itise the most effective experiments to fill the gaps in
our knowledge.

In the absence of a comprehensive experimental
database, properties can be estimated based on
models that have been fitted to the available exper-
imental data. It is important therefore to establish
techniques that make the best use of complex,
multi-variate data that are not uniformly distributed
in the variable space. The modelling technique we
describe below is not unique to materials science.
Previous complex materials problems where it has
been successfully applied include the modelling
and optimisation of the Charpy toughness and
strength of steel weld metals, the yield and ultimate
tensile strength of nickel-base superalloys, the
behaviour of high-temperature, low-creep steels,
and properties of polymeric and inorganic com-
pounds and ceramics. A review of these applications
has been given by Bhadeshia [3]. However, as far as
we are aware, the modelling method has so far not
been applied to the mechanical properties of neu-
tron-irradiated materials, such as those that are
being considered for future fusion power plants.

In this paper we describe a technique to represent
and analyse a relatively small and sparse database
of irradiated materials properties for irradiation
hardening of reduced-activation ferritic/martensitic
(RAFM) steels. Irradiation hardening is widely
believed to be caused by microstructural changes
such as the formation of neutron-induced
precipitates, dislocation loops, voids and helium-
containing bubbles. Such defects contribute to dis-
persed-barrier hardening and embrittlement, and
in some cases, swelling. However, the details of
the hardening process depend on many variables
including the chemical composition of the steel
and irradiation variables such as the dose, dose rate
and temperature. There is currently no comprehen-
sive physical model that can predict the hardening
expected as a function of all these inputs.

An artificial neural network (ANN) is therefore
used to model the experimental irradiation harden-
ing data (the term �artificial� is used to indicate that
these networks are computer programs, and there-
fore to distinguish them from �real� neural networks,
such as the human brain). Such a network is able to
capture complex non-linear patterns within the
data. The specific method used is based on a Bayes-
ian statistical approach, whereby the uncertainty
associated with any prediction takes account both
of experimental noise and the modelling uncer-
tainty. It is possible therefore to assign confidence
limits that depend on the position in the input space
where the prediction is attempted. This not only
warns of excessive extrapolation beyond the knowl-
edge base, but also indicates domains where the
dataset may be sparsely populated, resulting in
uncertain predictions. These methods have previ-
ously been extensively used in modelling the proper-
ties of materials which have not been subjected to
irradiation [3].

2. Analysis method

An ANN is used to perform multi-dimensional
non-linear regression on a dataset. The yield
strength of unirradiated and irradiated steels is
expressed as a non-linear function, f, of a number
of experimental variables in the database,

ry ¼ f ðfcig; cHe;CWT;K; t; T irr; T test; . . .Þ; ð1Þ
where {ci} is the chemical composition of the alloy,
cHe the concentration of any transmutation helium
produced, CWT a parameter to describe any cold-
working treatment prior to irradiation, K the irradi-
ation rate (in dpa s�1), t the duration time of the
irradiation – giving the overall irradiation damage
as Kt – and Tirr and Ttest are respectively the irradi-
ation and test temperatures of the sample.

Because assumptions are not made about the
form of this function (other than that it should be
differentiable), the neural network used is able to
respond flexibly to the demands made by the data,
capturing non-linear interactions between the
parameters. The form of the function f is inferred
through a training process during which the net-
work is exposed to a training dataset. If, on the
basis of what is known about irradiation effects, spe-
cific combinations of inputs are justified then they
are included as additional inputs; this is discussed
in Section 4. The aim is to deduce Eq. (1) and to
provide a measure of the uncertainty associated
with the predictions made from it. To control the
complexity of the fitting function, and thus any
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tendency to overfit the data, the training of the
model involves minimising an objective function,
which penalises over-complex functions; the overfit-
ting is also managed by testing the generalisation of
the model on unseen test data.

A brief description of the general procedure is as
follows. The arguments of f, or input variables, are
gathered in a set of what are termed hidden units.
A hidden unit is a non-linear operator – a �neuron�
– that is activated by a weighted sum of the input
variables. Each different neuron (i) possesses a
weight (wij) for each of the j input variables, as well
as a constant bias term hi. As noted previously, the
input variables can be specified functions of the
actual independent irradiation and material vari-
ables, or combinations of variables. The linear
weighted sum of the input variables and the bias
term form the arguments for the neuron activation
function, hi – in our case tanh(). The predicted net-
work output, y, is then computed as the linear
weighted sum of all hi. An untrained model is thus
defined by the choice of input variables, the number
of hidden units, and the set of initial guesses for wij

and hi, the seed. A series of models is thus trained
with different numbers of hidden units and seeds,
so that the optimal model or models can be located.
A more accurate prediction can often be produced
by creating a committee of more than one model,
Fig. 1. Distribution of a selection of different
and combining their predictions. The overall pre-
dicted output is then the average value of y from
each member of the committee.

The ANN training algorithm searches for an
optimal set of weights by a constrained minimiza-
tion of the variance between the predicted and mea-
sured values on a set of training data. The model is
then evaluated against a roughly equally sized set of
independent test data that was not used in the train-
ing itself. Over-correlation of the training data is
avoided by minimising this test error. The procedure
used here (due to MacKay [4]) provides uncertainty
estimates for the predictions; these uncertainties are
large in regions of sparsely populated data space
and for significant extrapolations. This procedure
is described in more detail in Appendix A.

3. The database

A database of the tensile properties of a set of
RAFM steels was compiled, primarily by Yama-
moto and co-workers, from the published literature
[5–49]. The database includes leading candidate
RAFM steels such as F82H (8Cr) and Eurofer 97
(9Cr) as well as conventional 9Cr steels such as
T91 (9Cr–1Mo) and EM10 (9Cr–1Mo). A set of
2.5Cr bainitic steel data is also included in the data-
base, which contains a total of about 1800
inputs, to illustrate the spread of data.
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datapoints. The data were randomly divided into
two equal groups designated the training and test
datasets. Fig. 1 illustrates the range of many of these
variables plotted against the yield stress, ry. These
graphs do not describe functional dependences,
but merely demonstrate that ry varies with many
inputs. It is evident that the data are not uniformly
distributed and further heterogeneities may exist
when correlations between the input variables are
considered. However, as will be seen later, the pres-
ent method is able to highlight regions of the input
space that lack information by associating larger
modelling uncertainties with predictions made in
such regions.



Table 1
Various inputs in the data set

Input variable Min. Max. Mean. Standard deviation

Irradiation temperature, Tirr, K 273 925 401.2 179.3
Test temperature, Ttest, K 123 973 549.5 209.4
Dose, dpa 0 90 3.47 10.04
He content, appm 0 5000 38.4 359.8
Cold working, % 0 10 0.09 0.94
Composition, wt%
C 0.087 0.2 0.097 0.013
Cr 2.25 12 8.325 1.027
W 0 3 1.485 0.778
Mo 0 1 0.16 0.363
Ta 0 0.54 0.064 0.102
V 0 0.3 0.182 0.054
Si 0 0.37 0.055 0.052
Mn 0 1.13 0.145 0.204
N 0 0.06 0.0025 0.081
Al 0 0.054 0.0008 0.037
As 0 0.005 0 0.0003
B 0 0.0085 0.0007 0.0013
Bi 0 0.005 0 0.0003
Ce 0 0.036 0.0001 0.0022
Co 0 0.01 0.0002 0.0009
Cu 0 0.035 0.0006 0.0032
Ge 0 1.2 0.0139 0.128
Mg 0 0.01 0 0.0006
Nb 0 0.16 0.0017 0.011
Ni 0 2 0.0576 0.31
O 0 0.009 0.0002 0.0011
P 0 0.007 0.0013 0.0014
Pb 0 0.005 0 0.0003
S 0 0.005 0.0012 0.0011
Sb 0 0.003 0 0.0002
Se 0 0.003 0 0.0002
Sn 0 0.003 0 0.0002
Te 0 0.005 0 0.0003
Ti 0 0.25 0.0099 0.046
Zn 0 0.005 0 0.0003
Zr 0 0.059 0.0003 0.0036
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The input variables are listed in Table 1 and
include most of the parameters thought to influence
the strength of irradiated steel: chemical com-
position and degree of cold working, irradiation
temperature, test temperature, total irradiation dis-
placement damage, and helium content. Because
the algorithm used is able to deduce the relevance
of each individual input variable, it is appropriate
to include all the available variables in the analysis.
Those variables which are not found to greatly
influence the strength are associated by the model
with minimal weights [50]. In some cases, full com-
positional data were not available and in these
instances the concentrations of deliberately added
chemical elements were set to zero, while the con-
centrations of impurities, which are inevitably pres-
ent, were set to be equal to the average of the
available data. The data contained no information
on the dose rate, K, or irradiation time [51,52].
Pre-irradiation heat-treatment information was also
missing for most of the data, and hence could not be
included in the training process. By highlighting
these difficulties it is hoped that future experiments
are better defined with a full reporting of the vari-
ables deemed here to be useful.

4. Yield stress model

The yield stress was modelled directly, rather
than the change caused by irradiation, as this is well
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characterised in unirradiated materials and so pro-
vides a good baseline for the algorithm; Dry can
then be calculated from the model outputs. The
choice of input variables is clearly important in
the training of a network. It is known, for example,
that the yield stress is affected by many factors,
including grain size, dislocation and precipitate den-
sities, and the presence and concentration of such
alloying elements as Ta and W [53,54]. However,
although the principles of these hardening mecha-
nisms are understood, it is not possible to make
quantitative predictions directly from theory owing
to the complexity of the phenomena involved. An
attempt can nevertheless be made to include aspects
of known physics by using appropriate combina-
tions of input variables. It should be noted that, if
these functional forms are not useful in explaining
the data, they will be effectively ignored by the net-
work. Thus, in addition to the raw inputs (Table 1),
terms were included as follows:

(a) Two Arrhenius-type relations for the tempera-
tures, Tirr and Ttest, to take account of any
thermally activated processes. Although the
processes involved cannot be simply described
by Arrhenius rate expressions, including this
termmayhelp themodel to capture interactions
that involve it. These have the standard form
Fig. 2. Perceived significances for inputs with different values of a. Each bar
eight models in the committee in total.
exp
�Q
kT

� �
; ð2Þ
in which Q is an activation energy and k is
Boltzmann�s constant.

(b) The He concentration-to-dpa ratio was in-
cluded, to complement the cHe input to allow
for possible interactions between gas and dis-
placement damage.

(c) A term defining saturation in the hardening as
the microstructure reaches a steady state in
terms of defect formation and annihilation as
is thought to occur under some irradiation
conditions [55,56].� �
r

1� exp �Kt
a

. ð3Þ
Here, a is a fitting parameter dependent on the
material and irradiation conditions – particu-
larly Tirr. Owing to the functional form of
Eq. (3), it is not possible to define the problem
in such a way that a can be inferred by the
network – an unfortunate limitation of the
methodology. Therefore, multiple values of a
were included as separate inputs leaving the
network to adopt the most suitable value(s).
In our case, a set of initial models was trained
for 11 values of a between 0.1 and 10 dpa. The
significances (equivalent to partial correlation
epresents a different model in the committee – there were



R. Kemp et al. / Journal of Nuclear Materials 348 (2006) 311–328 317
coefficients) inferred by the network for each
of these values were then examined (Fig. 2) –
each bar represents one of the eight models
in the committee used. The significance is max-
imum when an input is able to explain a large
amount of the variation in the output. It is
striking that low values (a � 1–4) are generally
preferred. This is consistent with there being a
strong low-dose/short time scale influence, and
such values are in agreement with those
observed by Yamamoto et al. [56]. Although
all values could have been included in the final
model, we chose to set a = 1 for final model
training. It would have been desirable to also
incorporate at least one higher value, but mod-
els trained with multiple values of a were more
complex and suffered an accompanying
increase in uncertainty. This frequently occurs
when there are a large number of similar
inputs and limited data to allow them to be
distinguished.
Fig. 3. Training the model. (a) Perceived level of noise for training d
complexity, (d) combined test error for different sizes of committee, (e) b
this case, the data are normalised.
To avoid biasing the model towards any partic-
ular combinations of parameters such as those
described above, the individual variables making
up these inputs were also included, so that their
direct influence, if any, could also be detected.
The model was trained on the natural logarithm
of the yield stress, rather than the yield stress itself.
This prevented the model from producing non-
physical negative predictions, and allowed the sim-
plification of some derived inputs – for example,
the Arrhenius relations could be included as an
input of the form (�1/T) rather than the exponent
(with the Q/k multiplier inferred by the network).
This procedure also allowed the model to easily
capture any potential power law dependencies, such
as the frequently used

ffiffiffiffiffi
Kt

p
, which is related to

hardening due to microstructural evolution under
irradiation [57]. Modelling ln(ry) results in a slight
decrease in sensitivity over modelling ry directly,
but the benefits described above more than com-
pensate.
ata, (b) test error, (c) log predictive error for increasing model
est single model performance on training data and (f) test data – in
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A total of 120 networks were trained with from 1
to 20 hidden units, and from six different seeds. As
the networks became more complex (that is, they
possess greater numbers of hidden units and are
hence more flexible) the perceived noise on the train-
ing data decreased as expected (Fig. 3(a)). This is a
measure of the �noise� – i.e. the experimental error
– required for the model to be correct given the data
– that is, the likelihood of the data, assuming the
model is correct. However, as shown in Fig. 3(b)
the ability of the models to predict ry for the test
Fig. 4. (a) Perceived significances rw for the committee members of the
the committee members of the model for irradiation and tensile test co
data does not decrease monotonically and is mini-
mum in the range of�4 hidden units. Fig. 3(c) shows
that the error metric that is used to consider uncer-
tainty and avoid over-correlation – the log predictive
error (LPE) (described in Appendix A) – also peaks
at about 4–6 hidden units. Also, as anticipated, more
accurate results were obtained by building a commit-
tee. In this case, the optimum committee was found
to have five members (Fig. 3(d)).

As mentioned above, the model provides a mea-
sure of the network-perceived significance, rw, for
model for alloying elements and (b) perceived significances rw for
nditions.
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each input. This is the extent to which each input
contributes to the output, and is akin to a partial
correlation coefficient in a multiple linear regression
analysis. These significances are shown for each
sub-model in the committee in Fig. 4(a) (for com-
position) and Fig. 4(b) (for irradiation and test
parameters).

As shown in Fig. 4(a), most of the compositional
variables were found to be insignificant. However,
this is not at all surprising, even for alloying
elements that are known to potentially influence ry
but that in the database: (a) have a narrow range
of values (e.g. C and V); (b) have only one or a
few values, some of which may be associated with
potentially confounding variants such as different
heat treatments (e.g. Cr, Si, Mn, B, Mo, W, Ni, P
and Nb); or (c) are alloying or trace impurity ele-
ments with missing values set to zero (these are
not included in the model). The same can be said
for cold work. However, as discussed later, the var-
ious alloys did have different ry as well as Dry
dependencies on both dpa and Ti. For example,
the alloy doped with 2 wt% Ni has a higher ry after
irradiation. Ti, Tt, and the three dose-related vari-
ables were significant, particularly in combination.
It is well known that test temperature has a strong
Fig. 5. Model prediction for the tensile test behaviour of unirradiated Eu
The bars represent modelling uncertainty.
effect on tensile tests, and it is to be expected that
irradiation temperature will also have a powerful
influence as a heat treatment in its own right – this
is why the time elapsed during irradiation is poten-
tially an important parameter. Notably neither He
nor He/dpa were found to play a significant role
in determining ry. As an example, Fig. 5 shows that
the procedure describes well the non-linear ry(Tt) of
Eurofer 97.

Predictions of the final trained committee model
on the input dataset are shown in Fig. 6. Given the
sparseness of the dataset and assumptions made for
the inputs, there are relatively few outlying points,
and those that belong to that class are accompanied
by a large uncertainty. There is a clear improvement
over the best single model, shown in Fig. 3(e) and
(f). For the final committee model, the standard
deviation of the predicted versus measured ry was
95.17 MPa. There were a total of 42 (from 1814 data
points) outliers (more than three standard devia-
tions away).

5. Properties of the trained network

In this section we discuss the properties of the
trained neural network, comparing its predictions
rofer�97 at different test temperatures plotted with measured data.



Fig. 6. Performances of the final committee model on the whole database. (a) the direct output ln(ry) and (b) converted to ry.

Table 2
Chemical composition inputs (in wt%) for model predictions

Alloy

Element F82H Eurofer�97 T91 9Cr–1WVTa 9Cr–1MoVNb–2W 2.5Cr–1.4WV

C 0.09 0.1 0.1 0.1 0.1 0.1
Cr 7.7 9 9 9 9 2.5
W 1.94 1.1 0 1 0 1.4
Mo 0 0 1 0 1 0
Ta 0.02 0.15 0 0.1 0 0
V 0.16 0.2 0.2 0.2 0.2 0.2
Si 0.11 0 0 0 0 0
Mn 0.16 0 0 0 0 0
N 0 0 0 0 0 0
Al 0 0 0 0 0 0
As 0 0 0 0 0 0
B 0.0002 0 0 0 0 0
Bi 0 0 0 0 0 0
Ce 0 0 0 0 0 0
Co 0 0 0 0 0 0
Cu 0 0 0 0 0 0
Ge 0 0 0 0 0 0
Mg 0 0 0 0 0 0
Nb 0 0 0.005 0 0.006 0
Ni 0 0 0 0 2 0
O 0 0 0 0 0 0
P 0.002 0 0 0 0 0
Pb 0 0 0 0 0 0
S 0.002 0 0 0 0 0
Sb 0 0 0 0 0 0
Se 0 0 0 0 0 0
Sn 0 0 0 0 0 0
Te 0 0 0 0 0 0
Ti 0 0 0 0 0 0
Zn 0 0 0 0 0 0
Zr 0 0 0 0 0 0

320 R. Kemp et al. / Journal of Nuclear Materials 348 (2006) 311–328
with previous conventional analyses of the same
database and assessing its ability to predict new,
unseen observations. Due to the complexities of a
neural-network model, the best way to uncover its
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properties is through �virtual experiments� – using it
to make predictions – rather than examination of
the weights or structure. The input compositions
for the predictions are shown in Table 2. Predictions
were not made for all alloys included in the
database.

5.1. Test and irradiation temperature

The dashed line in Fig. 7 shows that the model
predicts a peak in the Ti (=Tt) dependence of Dry
for Eurofer 97. The corresponding predictions
based on direct data fits by Yamamoto and
co-workers [56] are shown by the solid line. The
agreement is quite good below �350 �C but the
neural-network nominal prediction deviates from
the direct data fits at higher Ti, where negligible
Dry is observed. However, the direct fit line gener-
ally falls within the estimated uncertainty limits of
the neural-network model. Note that while the
direct data fit does not predict a peak in hardening
at 3 dpa over the nominal Ti range covered, it does
Fig. 7. Model prediction for the yield stress of Eurofer�97 irradiate
hardening predictions from Yamamoto et al. [56]. A dose of 3 dpa was c
of saturation in Yamamoto�s model.
predict one for the maximum Dry beyond a Ti-
dependent saturation dose. It can be postulated
that such a hardening peak is physically consistent
with the thermal mobility and recombination of
defects. At low temperatures the radiation-intro-
duced defects are not mobile enough to form the
extended structures such as dislocation loops,
and cascade overlap quickly leads to a saturated
damage state. At higher temperatures these struc-
tures tend to dissolve and the defects annhilate
at fixed sinks. In the intermediate temperature
regime, a hardening peak is therefore not unex-
pected.

Fig. 8 shows ry versus Ti = Tt neural-network
predictions for F82H in the irradiated and unirradi-
ated conditions, compared to data. The predictions
tend to fall only slightly below the unirradiated
reported by Hishanuma [58] over the entire range
of Tt. The nominal predicted ry for the irradiations
to 10 dpa are somewhat higher than Hishanuma�s
corresponding data points, but within the uncer-
tainty limits.
d to 3 dpa at various temperatures, compared with saturation
hosen for the predictions as it generally corresponds with the onset



Fig. 8. Model predictions for the behaviour of modified F82H, compared to those reported in Hishinuma [584]. The model predictions are
for 10 dpa, Ttest = Tirr. The doses in Hishinuma vary from 3 to 34 dpa.

Fig. 9. Model prediction showing irradiation hardening of Eurofer�97. Ttest = Tirr = 400 �C.

322 R. Kemp et al. / Journal of Nuclear Materials 348 (2006) 311–328
5.2. Irradiation dose

It is well known that irradiation causes rapid
hardening of steels even at low doses, and this
low-dose effect is reflected in the model (Fig. 9).
The degree to which the hardening will saturate
at high doses (as postulated by Makin and Minter
[59]) is unknown. Indeed, as observed in some
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cases [60], at higher T, the ry appears to reach a
maximum and then decrease. The model shows a
range of behaviours, depending on the alloy, some
showing a peak followed by a decrease of ry
(F82H) while others continue to increase (T91).
However, it is not known if these differences are
real or an artefact of the database distribution
and uncertainties. On average, the ANN-predicted
ry saturates at a substantial Dry that is higher than
predicted by the direct data fit. It is worth noting,
however, that the irradiation parameters for these
predictions lie significantly outside the training
database and so they are accompanied by large
uncertainties. The observed trends, though, are
reasonable, but only high-dose data generated in
future experiments will help validate and refine
the model.
5.3. Chemical influence

The presence of nickel appears to increase the
yield stress, both before and after irradiation (Figs.
10 and 11). This influence was observed and
described by Klueh and Vitek [61]. However, closer
examination of the original data showed that these
alloys were subjected to a different heat treatment
than others in the dataset, and this may have given
rise to this effect.
Fig. 10. Comparison of irradiation hardening of various steels showing
uncertainty bars have been omitted for clarity.
6. Comparison with other modelling methods

Ideally, and certainly in the long run, mechanical
property predictions will be based on hierarchical
models of microstructural evolutions linked to
structure property relations in a way that will
incorporate the effects of all important variables
and their interactions, as well as incorporating the
known physics and underlying mechanisms. Direct
non-linear regression fits to the data using simple
phenomenological, but physically motivated
models are also useful. For example, the fits by
Yamamoto et al. provide a good representation
of the existing Dry database [56]. However, such
models often contain assumptions that are some-
times hidden or unrecognised. For example, in the
fitting form assumed by Yamamoto et al., high-
dose saturation behaviour is assumed and predicted
from low-dose trends even in the absence of
high-dose data. While uncertainties in such extrapo-
lations can be estimated, the effects of the various
assumptions are not easy to quantify in a useful
way. In principle, the neural-network approach
avoids the need for any assumptions about
the form of the fitting equation, and provides error
estimates of extrapolations. However, this approach
has the corollary disadvantage that it does not allow
easy ways to include known physics. Thus the use of
both saturation and high-dose recovery. Ttest = Tirr = 400 �C. The



Fig. 11. Comparison between different types of steel irradiated to 2 dpa at different temperatures. The uncertainty bars have been omitted
for clarity.
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complementary approaches will be needed and
perhaps their most important contribution will
be to highlight the most significant gaps in our
knowledge in a way that can help guide future
experiments.
Fig. 12. Hardening predictions (and modelling uncertainties) for Eur
(Ti = Ttest) and dose.
7. Predictions

Fig. 12 shows the neural-network predictions of
ry and corresponding uncertainty estimates over a
range of Ttest, Ti (300–900 K) and dpa (0–200 dpa).
ofer�97 (top) and F82H (bottom), as a function of temperature
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The regions well outside the training database have
uncertainties that are comparable to or larger than
ry itself. These uncertainties thus represent areas
where experiments might fruitfully be carried out,
and provide an indication that predictions in these
areas should be regarded sceptically until cor-
roborated.

8. Discussion, summary and conclusions

The yield stresses of RAFM steels have been ana-
lysed using a neural-networks method based on a
Bayesian framework. The data were obtained from
a variety of sources and cover a wide range of compo-
sitions and irradiation conditions. Projected trends
have been found to be reasonably consistent with
those expected, and the quantitative agreement was
generally good even when checked against unseen
data within the range of the training database.

This paper demonstrates the power and flexibility
of a neural-network modelling approach to the
problem of analysing irradiation damage, and
should be viewed as an early step in a long-term
effort. Applied to the specific problem of hardening,
one of the first conclusions is that the current data-
base is insufficient to provide the desired refinement
of the model that would reduce the uncertainty in
predictions of irradiated yield stresses. The con-
struction of an improved database would be helped
by future experiments providing sufficient detail of
potential important variables, such as dose rate,
irradiation energy spectrum, length of irradiation,
and providing estimates of error in key variables,
such as irradiation temperature.

In spite of these limitations, the model provides a
means of making wide-ranging quantitative predic-
tions, including a capacity to indicate uncertainty.
This indication of modelling uncertainty also pro-
vides information about where it would be useful
to concentrate experimental efforts. The high-dose,
high-temperature regime is directly relevant to
fusion power plants, and yet is short of data –
although the difficulty of obtaining this data cur-
rently is acknowledged.

Future work will concentrate on expanding this
approach to other physical properties affected by
irradiation and refinement of the model to take
account of improvements in the database.

In summary the main points of this paper are:

1. A database of irradiated RAFM steel properties
was assembled from published results.
2. An artificial neural network was successfully
trained on this database, and captured non-linear
features present in the data.

3. The neural network also predicted unseen data
satisfactorily.

4. For complex problems of this kind, ANN models
offer a powerful method of identifying trends in
datasets and analysing the contributions of a
variety of input parameters.

5. A trained ANN model can be interrogated to
provide quantitative predictions of material
properties as they vary with any input. This can
be used to optimise materials across the whole
input data space. As the model also provides a
measure of uncertainty with its output, it mini-
mises misleading predictions in areas of sparse
training data.

6. Experimenters should report complete details of
both material manufacture (including chemical
analysis including impurities, and any heat treat-
ments used) and experimental conditions: dose
rate; irradiation energy; and irradiation tempera-
ture. These factors can change markedly depend-
ing on the position of the sample in the reactor,
and are considered to be important.

7. The current database should be expanded as new
experimental results become available, and
should incorporate the variables mentioned
above, where available.
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Appendix A. The artificial neural network

The operation and construction of such networks
have been reviewed in detail elsewhere [50,62], and
we summarise the main features here. A simple three
layer feed-forward variety, of the type commonly
used for many applications, is shown in Fig. A1.
The first layer consists of the inputs to the network.
The second layer consists of a number of neurons,
non-linear operators whose arguments are provided
by the first layer in the network. The activation



Fig. A1. A schematic diagram of a three layer feed-forward
network. The model�s complexity is controlled by the number of
neurons in the second layer, known as hidden units.
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function for the neurons in the second layer, hi, can
be any non-linear continuous and differentiable
function; in this work we have used the tanh func-
tion (Eq. (A.1)). The overall output function in
the third layer, y, can again be any function, and
is commonly linear (Eq. (A.2)). The neuron activa-
tion function is given by

hi ¼ tanh
X
j

wð1Þ
ij xi þ hð1Þi

 !
ðA:1Þ

and the output weighting function is

y ¼
X
i

wð2Þ
i hi þ hð2Þ. ðA:2Þ

The xi are the inputs, and w the weights which define
the network. The aim of training a network is to
find the optimum set of values for w. This procedure
is explained in more detail below. The parameters h
are known as biases, and are treated internally as
weights associated with a constant input set to
unity. The complexity of such networks scales with
the number of �hidden� units in the middle layer, and
it has been shown that with sufficient such neurons,
any continuous, differentiable function can be simu-
lated [4].

In order to simplify the weightings, inputs and
targets are normalised prior to training within a
range of ±0.5. The normalisation function is

xi ¼
x� xmin

xmax � xmin

� 0:5; ðA:3Þ
where x is the un-normalised input, xmin and xmax

are the minimum and maximum values in the data-
base for that input, and xi is the normalised value.
The network is therefore not constrained to a partic-
ular range of outputs (for example, positive outputs
only) and so the target must be chosen with care to
avoid unphysical model outputs. For example, for a
property which cannot be less than zero such as ry,
ln(ry) could be used as the network training target.

Because of the inherent flexibility of an ANN,
there is the possibility of overfitting a model. Train-
ing a network therefore involves finding a set of
weights and biases that minimise an objective func-

tion which balances complexity and accuracy,
typically

MðwÞ ¼ aEw þ bED; ðA:4Þ
in which Ew is a regulariser; its function is to force
the network to use small weights:

Ew ¼ 1

2

X
i

w2
i ðA:5Þ

and ED is the overall error between target output
values and network output values:

ED ¼ 1

2

X
i

ðtðiÞ � yðiÞÞ2; ðA:6Þ

where t(i) is the set of targets for the set of inputs x(i),
while y(i) is the set of corresponding network out-
puts. a and b are control parameters which influence
the balance between a simple and an over-complex
model.

In this case, the fitting method used was based on
a Bayesian approach and treats training as an infer-
ence problem, allowing estimates to be made of the
uncertainty of the model fit (Fig. A2). Rather than
trying to identify the best set of weights, the algo-
rithm infers a probability distribution for the
weights from the data presented. In this context,
the performances of different models are best evalu-
ated using the log predictive error (LPE) rather than
the test error. This error penalises wild predictions
to a lesser extent when they are accompanied by
appropriately large error bars and is defined by

LPE ¼
X
m

1

2

tðmÞ � yðmÞ
� �2

rðmÞ
y

� �2 þ log
ffiffiffiffiffiffi
2p

p
rðmÞ
y

� �2
64

3
75;
ðA:7Þ

where t and y are as defined above, and rðmÞ
y is

related to the uncertainty of fitting for the set of



Fig. A2. Schematic illustration of the uncertainty in defining a
fitting function in regions where data are sparse (B) or noisy (A).
The thinner lines represent error bounds due to uncertainties in
determining the weights. Note that, outside the range of data, the
extrapolation is increasingly uncertain (C).
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inputs x(m). It should be pointed out that, for com-
putational reasons, the training software actually
uses a negative version on this function that in-
creases with increasing accuracy (Fig. 3(c)).

To train a useful model, it is necessary to check
its ability to generalise to new data. To accomplish
this, the training data are randomly split into two
sets, a training set and a test set. The model is
trained on the first set, and then its predictions are
compared against the second. The error in these pre-
dictions is called the test error, and the ultimate pur-
pose of training a model is to minimise this error,
both against the training data and against unseen
data from future experiments.

Of course, models with different numbers of hid-
den units will give different predictions. These pre-
dictions will depend not only on the set of training
data, but also the initial guess made for the proba-
bility distribution of the weights, the prior (the
seed). Therefore, optimum predictions can often be
made by using more than one network. This is
referred to as a committee. The prediction �y of a
committee of networks is the average prediction of
its members, and the associated uncertainty is

r2 ¼ 1

L

X
l

rðlÞ2
y þ 1

L

X
l

ðyðlÞ � �yÞ2; ðA:8Þ

where L is the number of networks in the committee
and the exponent l refers to the model used to give
the corresponding prediction y(l). During training, it
is usual to compare the performances of increas-
ingly large committees on the testing set of data
(Fig. 3(d)). Usually, the error is minimised by using
more than one model in the committee. The selected
models are then retrained on the entire database.

Although the values of the weights in these mod-
els can always be examined, they are difficult to
interpret directly, and the easiest way to identify
the interactions in a model is to use it to make pre-
dictions and observe the behaviour that emerges
from various combinations of inputs.

The algorithm we used is due to MacKay and
allows the control parameters to be inferred from
the data, permitting automatic control of the model
complexity [4].
Software

A number of other trends predicted by the model
are currently being examined, but the number of
possibilities of interactions is such that it is not pos-
sible to study them all fully, so it is hoped that other
researchers will take the opportunity to help refine
the model and the dataset. As the dataset becomes
more complete and covers greater ranges of compo-
sitions of steel and irradiation conditions, the model
will become more accurate. A software suite for car-
rying out predictions using this model is available
online http://www.msm.ac.uk/map/map.html.
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